

In the circuit shown in the figure, the current through (1998)

- (A) the 3 Ω resistor is 0.50 A
- (B) the 3 Ω resistor is 0.25 A
- (C) the 4Ω resistor is 0.50 A
- (D) the 4 Ω resistor is 0.25 A

Sol. Let R_1 and R_2 be the effective resistances of the circuits to the right of CD and AB, respectively (see figure). These resistances are given by $R_1 = 2+4+2=8 \Omega$ and $R_2 = 2+(8 \parallel R_1)+2=2+(8 \parallel 8)+2=8 \Omega$.

Effective resistance of the complete circuit is $R = 3+(8 \parallel R_2)+2=3+(8 \parallel 8)+2=9 \Omega$. Thus the current in 3Ω resistor is i=V/R=9/9=1 A. Current i is equally divided at node A giving $i_1=0.5$ A. Current i_1 is further divided into two equal parts at node C giving $i_2=0.25$ A, the current through 4Ω resistor.

Ans. D 🖸